點擊化學:一種基于雜原子連接(CXC)快速有效合成有用新分子的化學合成方法。 [1]
生物正交化學:利用點擊化學原理在生命系統(tǒng)內部發(fā)生的化學反應,而不干擾天然生化過程。
2001年,對自然界最喜歡的分子的研究表明,與碳-碳鍵相比,分子更傾向于形成碳-雜原子鍵。 “點擊化學"概念的靈感來自于核酸、蛋白質和多糖是通過碳-雜原子鍵結合在一起的縮合聚合物。點擊化學是一種化學合成方法,可以快速有效地合成基于碳雜原子連接 (CXC) 的有用新分子。
在此之前,化學合成復雜、困難,但收率低。直到第一代點擊化學,一價銅催化的疊氮化物-炔環(huán)加成(CuAAC)反應被提出,復雜的反應開始通過以圖案化反應方式構建功能分子來簡化。然而,銅催化劑的細胞毒性限制了CuAAC反應在體外和體內的應用。
此后,化學家發(fā)現了一種應變促進的炔烴-疊氮化物環(huán)加成(SPAAC)反應,該反應無需細胞毒性銅催化劑即可發(fā)生疊氮化物-炔烴反應。該反應已用于在體外和體內標記細胞表面的糖蛋白,沒有明顯的細胞毒性。
然而,一些化學家對SPAAC的二級反應速率常數并不滿意。因此,布萊克曼等人。開發(fā)了s-四嗪和反式環(huán)辛烯 (TCO) 衍生物的環(huán)加成反應之間的逆電子需求狄爾斯-阿爾德 (iEDDA) 反應,可產生比 SPAAC 反應更快的無銅點擊化學反應。
圖2. 目前使用的點擊化學反應的特點,來源:參考文獻[3]
點擊化學在生物醫(yī)學研究領域取得了重要進展,特別是無銅點擊化學,包括 SPAAC 和 iEDDA 反應。在體外研究中,點擊化學可以對細胞靶蛋白進行特異性標記,并研究藥物靶標與活細胞中藥物替代物的相互作用。此外,細胞膜脂質和蛋白質可以在體外選擇性標記,并且細胞可以通過點擊化學連接在一起。在體內研究中,點擊化學使分子成像和藥物輸送能夠高效且有效地進行診斷和治療。 [3]
接下來,我們介紹點擊化學在生物醫(yī)學研究中的幾個具體應用。
無銅點擊化學最有趣的應用之一可能是細胞內感興趣的目標 (TOI) 蛋白質的熒光成像。 [3]特別是在 iEDDA 反應中,可以使用 TCO-配體綴合物以及隨后含有 Tz 的熒光團 (FLTz) 的處理成功地觀察活細胞中的先天 TOI 蛋白。
例如,臨床藥物AZD2281與TCO結合開發(fā)了用于研究PARP1蛋白(已知是DNA修復的重要細胞蛋白)的生物探針。 TCO 與抗癌劑紫杉醇偶聯,并使用紫杉醇-TCO/Tz-BODIPY FL 組合成功地實現了細胞內微管蛋白的可視化。后來的多配體-TCO 綴合物,如 BI2536、Foretinib、Dasatinib 和 Ibrutinib,也被用于開發(fā)靶向各種 TOI 蛋白,如 Polo 樣激酶 1 (PLK1)、MET 和 BTK 蛋白。 [3]
圖 3. MDA-MB436 細胞中 AZD2281-TCO 和 Texas Red-Tz 之間的無銅點擊反應。來源:參考文獻[3]
點擊化學已成為生物體研究中藥物靶向遞送的強大化學工具。點擊化學的快速二階反應速率常數、簡單性和正交性可用于聚合物合成或藥物載體開發(fā)過程中生物配體的位點特異性修飾。例如,2012 年,Koo 和 Lee 等人。提供證據表明體內點擊化學可用于納米顆粒遞送。在該研究中,將負載 Ac4ManNAz 的納米粒子對腫瘤細胞進行疊氮基標記,并使用含有光敏劑的 DBCO 修飾納米粒子進行二次腫瘤靶向,依次注射到小鼠體內,疊氮基和 DBCO 之間的 SPAAC 增強了腫瘤靶向性。 [3]
圖 4. 點擊化學在腫瘤靶向藥物遞送中的應用。來源:參考文獻[3]
Cu(I) 催化的炔烴疊氮環(huán)加成反應 (CuAAC) 在抗體藥物偶聯物 (ADC) 的合成中具有巨大潛力[4]。研究人員現已設計出高效且經濟高效的基于 CuAAC 的 ADC 偶聯方法,并證明可以快速合成 ADC,從而促進了 GlycoConnect 偶聯技術的發(fā)展。 GlycoConnect 使用天然糖基化位點實現靶向綴合,并且可以在短短幾天內將單克隆抗體轉化為穩(wěn)定的綴合 ADC。該技術基于兩個過程:首先是酶促重塑(用疊氮化物進行修飾和標記),然后是基于無銅點擊化學的有效負載連接。 Synaffix 已與多家公司合作開發(fā)其下一代 ADC 技術平臺,其中包括 GlycoConnect。
圖 5. 根據許可協(xié)議開發(fā)的下一代 ADC
ADC Therapeutics 是較早獲得 Synaffix ADC 平臺技術授權的公司,也是目前使用該技術開發(fā)的產品數量最多的代表,其中ADCT-601已處于臨床研究階段。 [5] 目前,ADC Therapeutics 在實體瘤領域的公開產品 (3/5) 正在使用 Synaffix 的 ADC 技術。
圖 6. ADC 治療產品線
圖 7. ADCT-601 的結構
由于反應條件較溫和且效率較高,點擊化學常用于PROTAC分子的連接體中以連接分子的兩端。瑞安·P·伍爾茲 (Ryan P Wurz) 等人展示了這種方法與溴結構域和末端結構域 4 (BRD4) 配體 JQ-1 (3) 以及針對 cereblon (CRBN) 和 Von Hippel–Lindau (VHL) 蛋白的連接酶結合劑的實用性 [6]。
圖8.基于Click Chemistry的PROTAC合成,來源:參考文獻[6]
基于點擊化學的診斷
點擊化學還可用于開發(fā)用于了解組織發(fā)育、疾病診斷和治療監(jiān)測的分子工具。許多癌癥將膜結合微泡 (MV) 釋放到外周循環(huán)中,對膠質母細胞瘤 (GBM) 等 MV 進行分析是一種很有前景的疾病診斷方法。例如,李等人。報道了一種結合 iEDDA 型點擊化學和小型微核磁共振 (μNMR) 的微流體系統(tǒng),用于分析 GBM 患者血液中的 MV [4]。
圖 9. 單擊“基于化學的診斷"。來源:參考文獻[3]
點擊化學和非銅生物正交反應在生物醫(yī)學研究領域取得了重要進展。點擊化學可以對細胞靶蛋白進行特異性標記,并可用于將細胞粘附在一起,還可以實現高效且有效的分子成像和藥物遞送,以用于診斷和治療目的。點擊化學還可用于開發(fā)DNA納米催化劑、基因組DNA化學合成、輔助CRISPR-Cas基因編輯、ADC和PROTAC合成等分子工具??傮w而言,點擊化學已成為生物醫(yī)學領域和生物醫(yī)學領域的重要工具。有機化學。
Biopharma PEG 作為全球點擊化學試劑的供應商,自豪地培育了這種能量。我們提供用疊氮化物、炔烴、DBCO 和其他環(huán)辛炔功能化的 PEG 產品和試劑。